Стальные вертикальные резервуары низкого давления
для нефти и нефтепродуктов

конструкция, проектирование, эксплуатация и ремонт

Фотограф в Минске
Введение
Глава 1. Основания и фундаменты
Глава 2. Основные свойства и работа металлов, применяемых в резервуаростроении
Виды разрушения металла
Стали, применяемые в резервуаростроении
Низколегированные стали
Строительные стали за рубежом
Структура и работа стали под нагрузкой
Работа стали под нагрузкой как следствие ее структуры
Работа стали при неравномерном распределении напряжений и ударная вязкость
Работа стали при неравномерном распределении напряжений
Влияние начальных напряжений
Ударная вязкость
Работа стали при повторных нагрузках
Работа стали при непрерывно повторной нагрузке. Вибрационная прочность
Разрушение металла от усталости
Переход металла в пластическое стадию и условие пластичности
Упругопластическая стадия работы материала при изгибе
Процесс образования шарнира пластичности
Развитие шарнира пластичности при нормальных и касательных напряжениях
Соотношение между напряжениями в шарнире пластичности
Распределение напряжений в шарнире пластичности
Основы расчета металлоконструкций
Сортамент
Сталь листовая
Уголковые профили
Швеллеры
Двутавры
Облегченные балки и тавры
Сварные соединения
Термические воздействия процесса сварки на работу соединения
Прочность сварных соединений
Расчет сварных соединений
Расчет стыковых швов
Расчет угловых швов
Расчет соединений на вибрационную нагрузку
Расчет комбинированных соединений
Контактная точечная сварка
Глава 3. Конструкции резервуаров
Глава 4. Основные положения по расчету и конструированию резервуаров
Глава 5. Оборудование резервуаров низкого давления, его назначение и эксплуатация
Глава 6. Изготовление и монтаж стальных резервуаров
Глава 7. Ремонт резервуаров

Литература

Ссылки

Приложение

 


Наши партнеры

2.6.4.3. Расчет угловых швов

В обычных угловых швах (фланговых, лобовых), выполненных ручной сваркой, расчетная высота рабочего сечения dш (рис. 75, а) принимается по биссектрисе угла сечения валика равной (без учета наплыва) dш, = 0,7 hш, где hштолщина шва (по катету); в пологих швах — dш принимается по меньшему катету. В вогнутых швах за dш принимается фактическая толщина шва по биссектрисе (рис. 75, б). При глубоком проплавлении автоматической или полуавтоматической сваркой (или специальными электродами с тугоплавкими обмазками— ультракороткой дугой) принимаются большие величины рабочей толщины шва — вплоть до  dш = hш (рис. 75, в). 

Расчетные размеры стыковых швов

Рис. 74. Расчетные размеры стыковых швов  

 

Расчетные размеры угловых швов

Рис. 75. Расчетные размеры угловых швов

а -  нормального; б — вогнутого; в—при глубоком проплавлении

 

Распределение напряжений по длине швов (лобовых, фланговых) или при обварке по контуру принимается равномерным.

Таким образом, напряжение в угловом шве определяется по формуле 

Напряжения в угловом шве

(50)

Здесь dш = bhш, где коэффициент b принимается равным: при ручной сварке b = 0.7; при полуавтоматической сварке b=0,8; при автоматической сварке и ультракороткой дуге (при однопро­ходной сварке) b =1. 

При прикреплении несимметричных профилей, например уголка (рис. 76), длины или площади швов должны быть так распределены, чтобы прикрепляемый элемент не получал дополнительного изгиба от эксцентриситета (площади швов должны быть распределены обратно пропорционально расстояниям от шва до оси элемента).

Таким образом, при требуемой площади швов 

Требуемая площадь сварных швов

(51)

площадь большего шва равна 

Площадь большего шва

(52)

 площадь меньшего шва равна 

Площадь меньшего шва

(53)

  Прикрепление уголка

Рис. 76. Прикрепление уголка

 

Во избежание пережогов при прикреплении фасонных профилей (уголков, швеллеров) наибольшая толщина углового шва принимается не больше 1.2d (рис. 77, а); здесь d—толщина прилегающей к соединению части профиля (например, полки уголка или стенки швеллера).

  Предельные размеры сварных соединений

Рис. 77. Предельные размеры сварных соединений

а — прикрепление фасонных профилей;  б— фланговые швы; в — прерывистые швы; г — нахлёстка с лобовыми швами

 

 

Наименьшая толщина угловых швов принимается в зависимости от толщины прикрепляемых элементов и составляет: 

При толщине элементов

4—9

10 - 14

15-25

26-40

>45 мм

Толщина шва

4

6

8

10

12 мм

 

Толщины угловых швов должны быть по возможности унифицированы. Наиболее рационально иметь в конструкции не более двух размеров толщины (чаще всего 6 — 8 мм). Для того чтобы избежать чрезмерно длинных прикреплений, длине каждого флангового шва, передающего продольную осевую силу, огра­ичивается величиной 60hш; наименьшая расчетная длина флангового или лобового шва принимается равной 40 мм или 4hш в связи с резкой концентрацией напряжений в коротких швах (рис. 77, б).

При малых усилиях могут применяться прерывистые угловые швы. Они нерациональны как по характеру их работы, так и по производственным условиям, но дают экономию наплавленного металла. Усилие передается на участки прерывистого шва поровну, Расстояние между участками прерывистого шва в сжатых элементах по условиям устойчивости сплачиваемых элементов должно составлять не более 15 d (где d — толщина самого тонкого элемента), в растянутых — не более 30 d (рис. 77, в).

При простой нахлестке элементов, соединяемых двумя лобовыми швами, расстояние между швами с точки зрения уменьшения сварочных напряжений должно быть не менее 5 d (рис. 77, г).

Исторический очерк развития нефтебаз и нефтяного транспорта

История возникновения нефтескладского хозяйства в нашей стране теснейшим образом связана с развитием бакинской нефтяной промышленности на Апшеронском полуострове. Первые сведения о бакинских нефтяных источниках уходят в глубь веков. В то время выходящую на поверхность нефть черпали ведрами, хранили и транспортировали в глиняных сосудах и бурдюках — кожаных мешках, смазанных изнутри смоляным варом.

Далее...