![]() |
Стальные вертикальные резервуары низкого давления
|
|
![]() |
Приложение
Наши партнеры |
![]() |
2.6.2. Термические воздействия процесса сварки на работу соединений Воздействие температуры на состояние металла в месте сварки Температурные напряжения при сварке
2.6.2.1. Воздействие температуры на состояние металла в месте сварки а) Изменение структуры металла при разогреве и остывании шва при сварке. Во время сварки температура в области шва равняется температуре плавления металла; поэтому металл околошовной зоны, называемой также зоной термического влияния, проходит весь интервал температур от нормальной рабочей температуры до температуры плавления. В соответствии с этим, металл в разных областях зоны термического влияния получает при нагревании различные структуры в зависимости от нагрева (см. рис. 6). Остывание небольшой области нагретого металла в околошовной зоне, окруженного большими массами холодного, хорошо теплопроводящего металла, происходит достаточно быстро, поэтому весьма часто в околошовной зоне сохраняется в переохлажденном виде структура, отвечающая температуре нагрева, что приводит к развитию внутренних напряжений, повышению хрупкости (снижению ударной вязкости) и образованию трещин. Поэтому первое мероприятие по повышению качества металла шва и околошовной зоны состоит в замедлении остывания шва, что достигается защитой шва шлаками (при шлакообразуюших электродах), флюсом или защитным газом, а в ряде случаев—искусственным подогревом или отжигом.
Рис. 55.Столбчатые кристаллы металла шва
Быстрое падение температуры металла при остывании шва приводит к сохранению крупных (столбчатых) кристаллов, являющихся типичными для первичной кристаллизации сварного шва (рис. 55). Крупнозернистость шва можно ослабить вводом в него из соответственно подобранных обмазок электродов или флюсов раскислителей (титана, марганца, кремния и других), увеличивающих число очагов кристаллизации. б) Образование трещин при остывании шва. Во время интенсивной кристаллизации остывающий металл шва подвергается значительным натяжениям со стороны очагов кристаллизации; между тем он в это время еще недостаточно прочен, вследствие чего в металле нередко образуются трещины, называемые горячими—по температуре образования (рис. 56).
Рис. 56. Горячие трещины при сварке
Горячие трещины, вначале часто не заметные, обладают способностью увеличиваться, особенно при воздействии динамической нагрузки, и могут полностью разрушить соединение; поэтому они являются весьма опасными. Появление горячих трещин зависит от химического состава стали (в этом отношении особенно неблагоприятны большие количества серы и фосфора), от структуры (крупнозернистая и вообще неоднородная структура менее благоприятна), от скорости отвода тепла, а потому и от формы изделия (так, крестовое и тавровое сечения, отводящие тепло по нескольким направлениям, менее благоприятны, чем простое соединение листов встык). Опасность появления горячих трещин уменьшается при легировании и, следовательно, зависит от марки покрытий электродов; в этом отношении полезны марганец (связывающий серу), ванадий, титан. Низколегированные стали вообще менее страдают от горячих трещин; весьма благоприятна сталь 3 спокойная. Зато в стали 3 кипящей трещины появляются достаточно часто, причем с повышением количества углерода опасность появления горячих трещин увеличивается. Всякие концентраторы напряжений, как, например, непровар в корне шва или сварка при низких температурах способствуют появлению горячих трещин. Возможность появления горячих трещин является основной причиной, требующей применения в ответственных сварных конструкциях спокойной стали. Во время остывания в металле шва и околошовной зоны, нагретом выше 900°, начинает при температуре 900° происходить фазовое превращение аустенита в феррит и перлит. Это связано с уменьшением величины зерна, так как из одного зерна аустенита может образоваться несколько зерен феррита и перлита (вторичная кристаллизация). Как было уже отмечено в § 3 главы II, переход аустенита в феррит связан с увеличением объема, нарушающим нормальный закон остывания (уменьшение объема); вследствие этого появляется значительная неравномерность деформаций в смежных точках, что может служить причиной появления трещин. При достаточно медленном остывании аустенит переходит в нормальную феррит перлитовую структуру, но в неблагоприятных условиях, при быстром остывании (хотя бы при отрицательной внешней температуре), переохлажденный аустенит при температуре ~250° может перейти в мартенсит — весьма хрупкую модификацию феррита с включением атома углерода. Мартенсит весьма склонен к образованию трещин; эти трещины располагаются параллельно шву на некотором расстоянии от него, в области сравнительно низких температур. Такие трещины, называемые холодными, наиболее свойственны кипящей стали. Содержание углерода в стали выше 0,2% также способствует появлению холодных трещин. Таким образом, в околошовной зоне мы имеем несколько опасных областей, где возможно появление трещин.
в) Распределение температуры в металле при сварке. Сварка при низких температурах. Протяженность околошовной зоны (зоны термического влияния) зависит от количества тепла, вводимого электрической дугой (т. е. от силы тока), и скорости сварки. В соответствии с законами теплопроводности по мере удаления от источника тепла (дуги) температура свариваемого изделия уменьшается по вогнутой кривой (рис. 57). Дуга—подвижный источник тепла, оставляющий за собой остывающий горячий сварной шов; в соответствии с этим за дугой происходит более медленное остывание, чем нагревание металла перед дугой, и изотермы термического влияния дуги представляют собой выгнутые, эксцентрично расположенные кривые (рис. 57). Чем скорость сварки больше, тем кривые изотерм более узки и остывание в поперечном направлении происходит более интенсивно (рис. 58); если при этом большая скорость сварки не компенсируется повышенной силой тока, возможно образование вышеуказанных хрупких областей и появление параллельных шву трещин. Низкие отрицательные температуры увеличивают интенсивность остывания и усугубляют возможность хрупкого разрушения, тем более, что при низких температурах склонность стали к хрупкому излому вообще повышается. Однако сварка хорошего качества при низких температурах (—30°) вполне возможна, что доказывается широким применением сварки и в зимнее время.
Рис. 57. Изменение температуры основного металла при сварке (изотермы) при движении электрода вдоль шва со скоростью 0,1 м/сек
Для сварки при низких температурах необходимо иметь: а) металл с малым содержанием серы, фосфора и углерода (не более 0,2%), лучше спокойной плавки; б) соответствующий и тщательно разработанный технологический процесс сварки с применением качественных электродов (в требуемых случаях с искусственным подогревом), гарантирующий отсутствие непроваров; в) конструктивную форму изделия, в которой не было бы концентрации швов и связанных с этим больших сварочных напряжений. Весьма существенное значение имеет тщательное выполнение кромок изделий без надрезов и других мест концентрации напряжений. Большинство повреждений сварных конструкций при низких температурах во время сварки или после сварки связано с концентрацией напряжений у надрезов металла и непроваров, а также с появлением холодных трещин. Сварка при низких температурах отражается на механических характеристиках сварного соединения: существенно снижаются ударная вязкость (рис. 60) и угол загиба; предел прочности остается без изменения. Структура металла при этом часто получается переохлажденной.
|
![]() |
||
Материалы www.rvsng.tyumendom.ru |